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Abstract

In the U.S. Census of Manufactures, the Census Bureau imputes missing values using a
combination of mean imputation, ratio imputation, and conditional mean imputation. It is well-
known that imputations based on these methods can result in underestimation of variability and
potential bias in multivariate inferences. We show that this appears to be the case for the existing
imputations in the Census of Manufactures. We then present an alternative strategy for handling
the missing data based on multiple imputation. Specifically, we impute missing values via
sequences of classification and regression trees, which offer a computationally straightforward
and flexible approach for semi-automatic, large-scale multiple imputation. We also present an
approach to evaluating these imputations based on posterior predictive checks. We use the
multiple imputations, and the imputations currently employed by the Census Bureau, to estimate
production function parameters and productivity dispersions. The results suggest that the two
approaches provide quite different answers about productivity.
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1 Introduction

Nearly all economic surveys suffer from item nonresponse, i.e., respondents

answer some questions but not others. Statistical agencies that collect data

frequently impute the missing values before making data available for sec-

ondary analyses. The manner of imputation can strongly impact secondary

analyses of the completed data and, hence, affect public policy (Little and

Rubin (2003)). For example, when the Census Bureau reported on its

website that interstate migration declined sharply in 2006, the supposedly

sharp decline in labor mobility prompted concern from Assistant Treasury

Secretary Alan Krueger (Fletcher (2010)), and a report from the Interna-

tional Monetary Fund suggested that the observed steep decline in labor

mobility was increasing unemployment (Batini, Celasun, Dowling, Estevao,

Keim, Sommer, and Tsounta (2010)). However, Kaplan and Schulhofer-

Wohl (2010) find that nearly all of the observed decline in annual interstate

migration between 2005 and 2006 is attributable to a change in the way the

Census Bureau imputes for missing data in the Current Population Survey.

In this article, we consider the impact of imputations for missing data

on another topic of considerable academic and policy interest: what de-

termines within-industry differences in total factor productivity? This is

currently one of the most important questions in industrial organization,

and its answer has implications for several other areas of economics, includ-

ing macroeconomics, trade, and labor economics. A large literature has been

devoted to investigating within-industry productivity differences, surveyed

by Bartelsman and Doms (2000), and more recently by Syverson (forthcom-

ing). As both reviews emphasize, measured within-industry productivity

dispersion is large and persistent. Averaging across all U.S. manufactur-

ing industries, Syverson (2004) finds that plants at the 90th percentile of

the productivity distribution are nearly twice as productive as plants at the

10th percentile. Explanations for these observed within-industry productiv-

ity differences include management practices, the quality of labor and cap-

ital inputs, information technology, research & development, international

trade, and regulation (Syverson (forthcoming)). We add another factor to
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the list: imputed data. In fact, we show that there may actually be more

within-industry productivity dispersion than the existing literature suggests.

We investigate the impacts of imputation using the U.S. Census Bureau’s

Census of Manufactures, which supports much of the empirical research on

plant-level productivity. Although the Census of Manufactures represents

the best available data for studying U.S. plant-level total factor productiv-

ity, imputations for nonresponse comprise a large percentage of the data;

in fact, we show that this percentage is far more than what is reported in

the existing literature. The Census Bureau imputes missing values using a

combination of mean imputation, ratio imputation, and conditional mean

imputation. Their primary goal is to facilitate point estimation of indus-

try aggregates; however, it is not clear if these imputations are appropriate

for multivariate analysis of microdata, such as estimating plant-level total

factor productivity. Our investigations suggest that they may not be. Func-

tions of key variables in the completed data show evidence of attenuation

and under-estimation of variability. Additionally, estimates of production

function parameters appear to be strongly impacted by the imputations, as

do estimates of the within-industry dispersion of productivity.

What can be done about this missing/imputed data problem? One so-

lution, popular among economists, is to drop plants with missing/imputed

values, and only analyze the plants with complete data. Unfortunately, it is

well-known that unless the missingness mechanism is missing completely at

random (MCAR), complete case analysis can lead to biased parameter esti-

mates (Little and Rubin (2003)). We find that the missing Census data are

not MCAR, probably in part because the Census Bureau makes a greater

effort to collect complete data from larger plants. Hence, complete-cases

is not a trustworthy solution. Further, the impacts of imputations are not

mitigated by focusing on certain industries or by using statistics that are

robust to outliers. The imputations are pervasive, affecting many industries

that have been studied previously.

As an alternative to these strategies, we create completed datasets via

multiple imputation (Rubin (1987)). Multiple imputation has the potential

to avoid problems that plague strategies like mean imputation, ratio impu-
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tation, and conditional mean imputation. First, it draws imputed values

from models that potentially condition on all variables in the data, which

enables imputations to reflect multivariate relationships. In contrast, mean

imputation fails to preserve any multivariate relationships, and ratio impu-

tation at best preserves selected bivariate relationships used in the ratios.

Conditional mean imputation can condition on all variables in the data and

preserve multivariate relationships. However, like mean imputation and ra-

tio imputation, conditional mean imputation ignores the stochastic nature

of the data. This can result in under-estimation of variability. In contrast,

multiple imputation can generate appropriately dispersed values. Finally,

multiple imputation offers secondary analysts the potential for valid vari-

ance estimation in multivariate models, including regressions useful in pro-

ductivity analysis. In contrast, single imputation procedures result in under-

estimation of uncertainty, because typically analysts treat the imputations

as if they were genuine values. See Little and Rubin (2003) for further dis-

cussion of the benefits of multiple imputation over mean imputation, ratio

imputation, and conditional mean imputation.

The key to the success of multiple imputation, particularly with large

fractions of missing data, is the validity of the imputation model. Finding

good fitting models is particularly challenging in the Census of Manufac-

tures, as models that seem to work well in one industry may not in another;

for example, conditioning on geographic region (e.g., because of differences

in prices) may be important in some industries, but not others. Given the

large number of industries and variables to be imputed, it is desirable to

have imputation procedures that flexibly fit each variable in each industry

with minimal tuning by the imputer.

Recognizing this, we impute missing items in the Census of Manufac-

tures data using a sequence of classification and regression trees, as recently

developed by Burgette and Reiter (2010). This method automatically han-

dles mixed categorical and continuous data, works for skewed distributions

like those in the Census of Manufactures data, and fits interactions and non-

linear relationships without parametric assumptions. The resulting multiple

imputations lead to substantially different estimates of plant-productivity
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than those based on the Census Bureau completed datasets, verifying that

the method of imputation has a strong impact on conclusions about plant-

level productivity. Further, given the documented deficiencies of imputation

techniques like those used by the Census Bureau, the differential results sug-

gest that improved imputation procedures like the one presented here would

benefit users of the Census of Manufactures microdata.

2 Background on Plant-level Productivity

Conceptually, total-factor productivity (TFP) is how much output is pro-

duced from a given level of all measurable inputs. Plants with higher TFP

produce more output from the same level of inputs, or the same output

with lower levels of inputs. Syverson (forthcoming) reviews several ways

of estimating plant-level TFP and the measurement issues inherent in each

approach. Here we take a very common approach: we estimate a production

function. Specifically, for each industry, we assume that the technology of

every plant can be approximated by a 4-factor Cobb-Douglas production

function:

lnQi = β0 + βklnKi + βllnLi + βelnEi + βmlnMi + ui (1)

where Qi is the output of plant i, Ki is the capital stock, Li is labor, Ei is

energy, Mi is materials, and ui is an error term. The ui can include both

productivity and measurement error in the dependent variable. We use the

total value of shipments to measure output, so our measure of productivity

also includes any within-industry differences in prices. For capital, we use

the book value of assets. We measure labor in production-worker-equivalent

hours: Li = SWi
PHi
WWi

, where SW are total salaries and wages, PH are

production worker hours, and WW are production worker wages. Energy

is the sum of the cost of fuels and the cost of purchased electricity. For

materials, we use the total cost of materials less energy costs. We estimate

equation (1) separately for each industry for 2007 by OLS and take the

estimated residuals (plus the estimated intercept β̂0) as our estimates of

total factor productivity. It is well known that if plant managers know
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the plant’s productivity and take it into account when choosing inputs, the

OLS estimator of the β parameter vector is biased (Marschak and Andrews

(1944)). However, our goal here is to assess the effects of imputations on

TFP estimates, not to compare production function estimators.

3 The Impact of Missing Data in the Census of

Manufactures

The 2002 and 2007 Censuses of Manufactures are available to researchers via

the Census Research Data Center network. They include roughly 300,000

manufacturing plants in each year. Plants with fewer than five employees,

which account for about a third of the plants in the census, are not sent a

survey form. Hence, most data for these plants are imputed from admin-

istrative records (AR). Following most researchers who use the Census of

Manufactures, we drop all these AR cases. We also only include tabulated

establishments in our sample, since non-tabulated establishments are known

to have data that is of poor quality in some way. The final sample size is

approximately 200,000 plants in each year.

Over the years, the Census of Manufactures has been plagued by item

non-response. However, until the 2002 census, it was difficult to identify

which, if any, items for a given plant were imputed due to item nonresponse,

because item-level edit/impute flags were not made available to researchers.

Dunne (1998) developed several clever ways to identify some of the imputed

values, although the item-level flags that became available in the 2002 Cen-

sus show that a much higher percentage of observations are imputed than are

identified by Dunne’s methods (White and Reiter (2008)). The item-level

flags available in the 2002 and 2007 censuses contain codes which provide

some information about how each item was imputed. However, in most

cases, the definition of the codes is rather vague. We have not been able to

obtain the computer code used to generate these imputations.

Table 1 presents the means and standard deviations of the within-industry

imputation rates for all 6-digit NAICS industries. In identifying these

records, we distinguish between edits or analyst corrections versus imputa-
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tions.1 It is clear that high percentages of data are imputed. For example,

in both 2002 and 2007, for the average industry about 27% of the data on

Total Value of Shipments (TVS) are imputed. For some other key variables,

the mean imputation rate is even higher: for the average industry 42% of

the Total Cost of Materials (CM) data are imputed in both years, and 37%

and 38% of the Cost of Purchased Electricity (EE) data are imputed in 2002

and 2007, respectively. There is also significant variation in the imputation

rates across industries. For these key variables, the standard deviation of

the 6-digit NAICS level industry imputation rates range from 7 percentage

points to 14 percentage points in 2002, and from 9 percentage points to 13

percentage points in 2007. This means, for example, that an industry that is

one standard deviation above the mean in terms of its cost of materials im-

putation rate would have roughly 52% of its cost of materials data imputed

in 2007.

To get some sense of how the Census Bureau’s imputations might affect

the relationships between key variables, we compute the following ratio for

several input variables X:

RX =
IQR(

Ximp

TV SimpX
)

IQR( Xobs
TV Sobs

)
(2)

where IQR(Z) is the interquartile range of Z, Ximp represents imputed

cases for the variable X, TV SimpX are the corresponding observations for

the total value of shipments (which may be either imputed or observed),

Xobs are observed cases for the variable X, and TV Sobs are the correspond-

ing TVS observations. A ratio less than one is evidence that there is less

dispersion in the imputed data than there is in the observed data. We com-

pute these ratios for several inputs: capital (TAE), production worker hours

(PH), the cost of materials (CM), the cost of electricity (EE), and the cost

of fuels (CF). Table 2 presents the ratio of IQRs for the industries at the

25th, 50th, and 75th percentiles of the industry distributions. The results

suggest that the Census Bureau’s imputations tend to reduce the amount of

1In an appendix–available from the authors–we describe in greater detail how we iden-

tify imputed items.
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within-industry variation in the ratios of key variables, in some cases quite

drastically. For example, in 2002 when the book value of assets (TAE) is

imputed, for the median 6-digit NAICS industry the IQR of the TAE
TV S ratio

is only 0.4 percent of the IQR of TAE
TV S when both variables are observed.

In 2007 the variation in the TAE
TV S ratio when TAE is imputed is much more

similar to the variation in the TAE
TV S in the fully observed data. The item-

level edit/impute flags indicate that in the 2007 Census, the Bureau changed

the way it imputed for capital (TAE) in the majority of cases. This may

account for the increase in the RTAE ratio in 2007. However, in both years,

for most industries, and for all of these key input variables, when a variable

X is imputed, there is much less variation in the X
TV S ratio than there is

when X is observed. Since total factor productivity essentially measures

the relationship between output and these inputs, it seems likely that es-

timates of productivity dispersion will be affected by the Census Bureau’s

imputations.

We next directly investigate the impact of imputation on estimates of

plant-level productivity by estimating the model in equation (1) by OLS.

To do so, we select a few detailed industries: fluid milk processing (NAICS

311511), coffee & tea manufacturing (NAICS 311920), flour milling (NAICS

311211), sugar manufacturing (NAICS 31131), ice manufacturing (NAICS

312113), soy bean processing (NAICS 311222), pesticides manufacturing

(NAICS 32532), and fertilizer manufacturing (NAICS 32531). We select

these industries for several reasons. Some of them (milk, ice, flour, soy

beans) are relatively homogenous products, which should minimize within-

industry differences due to product differentiation. In other words, for these

industries we would think that the Census Bureau’s relatively simple impu-

tation methods would have a better chance of preserving the relationships

in the data, since the products produced by each plant in an industry are

relatively similar. A relatively high percentage of pesticides shipments are

exports, allowing us to investigate the effect of imputation on the estimated

relationship between productivity and international trade. Most of these

industries are inputs into or use inputs from the agricultural sector, and

thus are of interest to agricultural policymakers. Finally, nearly all of these
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industries have been studied in previous research.2 Table 3 shows the sam-

ple sizes and the imputation rates for key variables for each of our selected

industries in the 2007 Census of Manufactures. Comparing Table 3 to Table

1, these industries are not atypical in terms of their imputation rates.

Table 4 presents the production function parameter estimates for se-

lected industries for 2007. For several industries, the differences between

the results based on the observed data and the completed data are economi-

cally significant. For example, for soy beans processing the output elasticity

estimates for capital and energy are 0.15 and −0.08 in the fully observed

data, but 0.04 and 0.06 in the Bureau-completed data. For pesticides man-

ufacturing the estimated output elasticities for capital, labor, energy, and

materials in the full observed data are, respectively, 0.23, 0.25, −0.03, and

0.49, respectively. In contrast, in the Bureau-completed data, the corre-

sponding output elasticity estimates for the same industry are 0.09, 0.15,

0.15, and 0.54.

Since a relatively large fraction of pesticides shipments are exported,

for the pesticides industry we also include a dummy for whether or not

a plant exports some of its shipments. Previous research has found that

exporters tend to be more productive than non-exporters (see, e.g., Bernard

and Jensen (1999)). Although in this sample we do not overturn the Bernard

and Jensen result, the coefficient estimate on the exporter dummy in the

Bureau-completed data is only about two-thirds the estimate based on the

fully observed data.

The next-to-last column of Table 4 shows the ratio of productivity at

the 75th percentile of an industry’s productivity distribution to productiv-

ity at the 25th percentile. For a few industries (coffee & tea, fertilizer, and

ice), the Bureau’s imputations seem to decrease the estimated 75-25 ratio

substantially. However, this result is not universal. The final column shows

2Foster, Haltiwanger, and Syverson (2008) study productivity dispersion in coffee, ice,

and sugar manufacturing; Davis, Grim, and Haltiwanger (2008) study the effect of elec-

tricity prices on measures of electricity productivity dispersion in the ice and coffee man-

ufacturing industries, among other industries; Roberts, Klimek, and Dunne (2004) study

entry and exit in the fluid milk industry; pesticides manufacturing has been studied by

Ollinger and Fernandez-Cornejo (1995).
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the ratio of the 90th percentile to the 10th percentile of productivity within

each industry. For this measure, the Bureau-completed data produces sub-

stantially lower estimates of TFP dispersion for two industries (coffee &

tea and pesticides), but substantially higher estimates of TFP dispersion

for two other industries (flour and soy beans). Clearly, the Census Bureau

imputations have an impact on productivity analyses.

4 Multiple Imputation using Classification and Re-

gression Trees

Given the documented deficiencies with mean, ratio, and conditional mean

imputation in the statistical literature, the results of the previous section

suggest that one can improve on the imputation strategy being employed

by the Census Bureau for the Census of Manufactures. We now describe

our attempt to do so based on multiple imputation via sequential regression

trees. We present only a broad overview of the approach here and refer the

reader to Burgette and Reiter (2010) for details on the method.

Classification and regression trees (CART) seek to approximate the con-

ditional distribution of a univariate outcome from multiple predictors (see

Breiman, Friedman, Olshen, and Stone (1984), Hastie, Tibshirani, and

Friedman (2009), and Ripley (2009)). The CART algorithm partitions the

predictor space so that subsets of units formed by the partitions have rela-

tively homogeneous outcomes. The partitions are found by recursive binary

splits of the predictors. The series of splits can be effectively represented

by a tree structure, with leaves corresponding to the subsets of units. The

values in each leaf represent the conditional distribution of the outcome for

units in the data with predictors that satisfy the partitioning criteria that

define the leaf.

The imputation process is done separately for each industry. We begin

the process in any industry by filling in initial guesses at the missing data to

create completed datasets for the industry; see Burgette and Reiter (2010)

for an explanation of how to obtain initial guesses. Then, we order the

variables in terms of increasing percentages of missing data. For the first
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variable in this ordering with missing data, say Y1, we fit the tree of Y1 on all

other variables, say Y−1, so that each leaf contains at least k records; call this

tree Y(1). We use k = 5, which is a default specification in many applications

of CART, to provide sufficient accuracy and reasonably fast running time.

We grow Y(1) by finding the splits that successively minimize the deviance of

Y1 in the leaves. We cease splitting any particular leaf when the deviance in

that leaf is less than 0.00001 times the deviance in the marginal distribution

of Y1 or when we cannot ensure at least k records in each child leaf. For any

record with missing data, we trace down the branches of Y(1) until we find

that record’s terminal leaf. Let Lw be the wth terminal leaf in Y(1), and

let Y
(1)
Lw

be the nLw values of Y1 in leaf Lw. For all records whose terminal

leaf is Lw, we generate replacement values of Yij by drawing from Y
(1)
Lw

using

the Bayesian bootstrap Rubin (1981). Repeating the Bayesian bootstrap for

each leaf of Y(1) results in an initial set of plausible values.

We next move to the second variable in the ordering with missing data,

say Y2. We fit the tree of Y2 on all other variables, which we call Y(2),

using the newly completed values of Y1. We run observations down Y(2)

to create plausible values for Y2. The process continues for each Yi in the

ordering, each time using the newly imputed values of Y−i to fit the tree

and in locating leaves. We then cycle through this process five times to help

move the trees away from the initial starting values. The end result is one

completed dataset. We repeat this entire process m times to generate m

completed datasets.

In the Census of Manufactures data, we delete (make missing) any

Census-imputations identified by the item-level edit/impute flags, and run

the sequential CART to create m = 20 completed datasets. The predictors

for each tree include—whenever the variable is not the dependent variable—

the total value of shipments, the total book value of assets, total salaries

and wages, total employment, production worker wages, production worker

hours, the number of production workers, the cost of purchased electricity,

kilowatt hours of electricity, the cost of fuels, and the total cost of materi-

als. We run the imputation procedure separately for each 5-digit or 6-digit

NAICS industry.
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Table 5 presents the production function parameter estimates and esti-

mates of within-industry TFP dispersion based on datasets completed with

the sequential CART method. The reported point estimates are the means

of the parameter estimates and the means of the measures of TFP dispersion

across the 20 implicates. For the production function parameter estimates,

we compute the standard errors using Rubin (1987)’s combining formulas,

which take into account the fact some of the data is imputed. For the mea-

sures of TFP dispersion we compute the standard deviation of the measures

across the 20 estimates for each industry. For several industries (coffee &

tea, fertilizer, sugar), the across-implicate standard deviation in the 90-10

ratio of TFP is substantial, indicating that missing data is responsible for

a substantial amount of uncertainty about the amount of within-industry

productivity dispersion in these industries.

Comparing Table 5 to Table 4, for most industries either the parameter

estimates or the estimates of productivity dispersion–or both–differ substan-

tially from the estimates based on the Census Bureau-completed data. For

every industry, the sequential CART-completed data indicates that there

is more within-industry TFP dispersion than the Bureau-completed data,

and in some cases quite a lot more. For example, for sugar manufacturing,

the average estimate of the 90-10 TFP ratio based on the CART-completed

data is 131 percentage points higher than the estimate based on the Bureau-

completed data; for coffee and tea manufacturing, the CART-completed av-

erage 90-10 TFP ratio is 98 percentage points higher than the 90-10 ratio

based on the Bureau-completed data; for fertilizer the CART-completed

average is 26 percentage points higher than estimate based on the Bureau-

completed data; and for both fluid milk processing and ice manufacturing

the CART-completed average 90-10 ratio is 26 percentage points higher.

Why are the TFP dispersion measures higher in the CART-completed

data than they are in the Bureau-completed data? There are at least two

possible reasons. First, as we saw in table 2, the relationship between total

value of shipments and input variables has less variability in the Census Bu-

reau’s imputations than it does in the fully observed data. Since the CART

imputations are essentially taking draws from the observed data (conditional
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on a set of predictors), we might expect to see more variability in the re-

lationship between TVS and the input variables in the CART-completed

datasets, and thus more TFP dispersion. Second, missingness in Census of

Manufactures is not completely at random (MCAR). In particular, smaller

plants are more likely to have missing data. To the extent that plant size

and productivity are correlated, imputation methods that fail to take this

correlation into account will tend to reduce the amount of measured TFP

dispersion.

To check the validity of our imputation models for these analyses, we

use posterior predictive checks (He, Zaslavsky, Harrington, Catalano, and

Landrum (2010)). Following Burgette and Reiter (2010), suppose that the

n by k data matrix Y is arranged so that Y = (Yp|Yc), where Yp are the

p partially observed columns of Y and Yc are the remaining k − p columns

that are completely observed (payroll and total employment in our case).

Let Yobs denote the set of observed elements in Y , and let Ymis denote the

set of missing elements. For each industry, we use the CART method to

create 500 pairs of datasets. The first dataset in each pair is a completed

dataset, in which we create imputations for each element of Ymis. To create

the second dataset in each pair, we replace every element of Yp, including

elements that were not imputed in the original data. To do this, we take

draws from the predictive distribution of Yp conditional on Yc using the tree

fitted to create the first dataset in the pair. Let the second datasets in each

pair be called the predicted datasets. We then use OLS to estimate the

production function specified in (1) separately on each dataset. For each of

the 500 pairs of datasets, we compute the differences between the parameter

estimates from the completed dataset and those from the predicted dataset.

Finally, for each parameter βj , we compute a two-sided posterior predictive

p-value:

P =
2

500
min{

500∑
i=1

I(β̂imp,ij − β̂pred,ij),
500∑
i=1

I(β̂pred,ij − β̂imp,ij)} (3)

where I(x) equals one if x > 0 and equals zero otherwise. Here, β̂imp,ij is the

estimate of βj for input j from the ith completed dataset, and β̂pred,ij is the
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estimate from the ith predicted dataset. If the predicted data come from

the same distribution as the completed data, we would expect β̂imp,ij to be

higher than β̂pred,ij for about half the dataset pairs and lower than β̂pred,ij in

the other half. A small p-value indicates that the β̂pred,i consistently differs

from β̂imp,i in one direction. This would suggest that the imputation model

does not adequately capture the relationships in the production function,

and thus estimates based on the imputed data may be biased.

Table 6 presents the p-values for each production function parameter

for selected industries in 2007. Basically, we find little evidence that our

CART imputations are distorting the relationships between the variables in

a way that would lead to biased production function parameter estimates.

Although this does not confirm that the CART-based imputations result in

the correct model, it does suggest that for at least this analysis the multiple

imputation provides reasonable answers.

5 Conclusions and Suggestions for Further Research

Much of the literature on U.S. plant-level productivity uses the Census

Bureau’s Census of Manufactures. Even after dropping Administrative

Records, a surprisingly large percentage of census data available to re-

searchers is imputed. Our results suggest that these imputations have an

economically significant effect on estimates of within-industry productivity

dispersion. Using classification and regression trees, we provide a new set

of imputations that seek to better preserve the joint distribution of key

variables in the data and thus provide more accurate estimates of plant-

level productivity dispersion and the relationship between productivity and

other variables. The estimates of within-industry TFP dispersion using

CART-completed data are often significantly higher than estimates based

on the Census Bureau-completed data. These results suggest that there

may be more within-industry productivity dispersion than the previous lit-

erature suggests. The existing literature provides a variety of explanations

for within-industry productivity dispersion, including heterogeneity in man-

agement practices, the quality of labor and capital inputs, information tech-
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nology, research and development, international trade, and regulation. To

the extent that these factors are not part of the Census Bureau’s imputa-

tion models (and they almost certainly are not), estimates of the effects of

these factors on productivity dispersion in the Census data are probably

biased. Researchers using the Census of Manufactures should consider how

the Census Bureau’s imputations may affect their estimates and consider

alternative methods of imputation that try to preserve the key relationships

in the data.

More broadly, as Kaplan and Schulhofer-Wohl (2010) illustrate, miss-

ing and imputed data can have a direct effect on policy discussions. As

an increasing number of researchers conduct policy-relevant research using

Census microdata made available via the expanding Census Research Data

Center Network, this microdata will (hopefully) become increasingly im-

portant for policy debates. As a result it will be increasingly important

for policymakers, researchers and the Census Bureau to understand how

missing and imputed data affect estimates produced from these data.
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Table 1: Imputation Rates for Key Variables At 6-digit NAICS Industry

Level 2002 and 2007 Censuses of Manufactures

Total Book Production Cost of

Value of Value of Worker Purchased Cost of Cost of

year Statistic Shipments Assets Hours Electricity Fuels Materials

2002 Mean 0.27 0.31 0.19 0.38 0.37 0.42

s.d. 0.09 0.10 0.07 0.14 0.14 0.10

2007 Mean 0.27 0.32 0.31 0.37 0.35 0.42

s.d. 0.09 0.10 0.13 0.13 0.12 0.10

The table shows the means and standard deviations of 6-digit NAICS industry-level

imputation rates. The imputation rate is the percentage of tabulated non-Administrative

Records cases that are imputed (not just edited) by the Census Bureau.
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Table 2: Distribution of Ratios of Within-Industry Interquartile Ranges of

Ratios of Key Variables in Imputed Data vs. Fully Observed Data (equation

2)

Book Production Cost of

Value of Worker Purchased Cost of Cost of

percentile Assets Hours Electricity Fuels Materials

2002

25th 0.002 0.159 0.062 0.088 0.036

50th 0.004 0.293 0.112 0.174 0.208

75th 0.018 0.522 0.219 0.356 0.456

2007

25th 0.216 0.353 0.088 0.152 0.089

50th 0.369 0.486 0.179 0.370 0.262

75th 0.565 0.704 0.326 0.782 0.478

The table shows the 25th, 50th and 75th percentiles of the ratios

of the within-6-digit-NAICS industry interquartile ranges (IQR)

of inputs-to-TVS ratios in the imputed data relative to the IQR

of the same ratio in the same industry in the fully observed data.

A ratio less than one indicates that there is less dispersion in the

input-to-TVS ratio in the imputed data for a given industry than in

the fully observed data for the same industry.
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Table 3: Imputation Rates for Key Variables, 2007 Censuses of Manufac-

tures, Selected Industries

Total Book Production Cost of

Sample Value of Value of Worker Electricity Cost of Cost of

industry Size Shipments Assets Hours Purchased Fuels Materials

coffee & tea 186 0.31 0.38 0.35 0.45 0.43 0.55

fertilizer 472 0.29 0.38 0.35 0.39 0.36 0.46

flour 210 0.22 0.20 0.18 0.21 0.20 0.31

fluid milk 362 0.13 0.18 0.17 0.20 0.20 0.32

ice 295 0.23 0.23 0.21 0.25 0.24 0.31

pesticides 196 0.24 0.30 0.27 0.40 0.39 0.48

soy beans 89 0.13 0.25 0.17 0.33 0.33 0.38

sugar 73 0.41 0.42 0.27 0.41 0.38 0.45

The table shows imputation rates for each 5- or 6-digit NAICS industry.

The imputation rate is the percentage of tabulated non-Administrative

Records cases that are imputed (not just edited) by the Census Bureau.
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Table 4: Production Function Parameter Estimates And Productivity Dis-

persion, Selected Industries, 2007 Census of Manufactures

Production Function Coefficients TFP ratios

75-25 90-10

Capital Labor Energy Materials Exports TFP TFP

industry βk βl βe βm Dummy ratio ratio

(a) Fully Observed Data

coffee & tea 0.08 0.30 0.04 0.61 1.68 2.39

fertilizer 0.04 0.22 0.11 0.60 1.52 2.27

flour 0.02 0.13 0.11 0.72 1.20 1.42

fluid milk 0.05 0.15 0.05 0.70 1.28 1.82

ice 0.04 0.34 0.32 0.38 1.56 2.17

pesticides 0.23 0.25 -0.03 0.49 0.32 1.74 3.56

soy beans 0.15 0.11 -0.08 0.85 1.28 1.61

sugar 0.13 0.21 0.05 0.60 1.33 1.89

(b) Census Bureau-Completed Data

coffee & tea 0.14 0.29 -0.02 0.62 1.36 2.08

fertilizer 0.05 0.21 0.13 0.58 1.40 2.15

flour 0.05 0.11 0.08 0.75 1.20 1.59

fluid milk 0.04 0.18 0.12 0.66 1.30 1.77

ice 0.05 0.31 0.30 0.39 1.40 2.13

pesticides 0.09 0.15 0.15 0.54 0.22 1.69 3.10

soy beans 0.04 0.11 0.06 0.84 1.25 1.84

sugar 0.15 0.19 0.08 0.52 1.37 1.83

Census Bureau-completed data include both fully observed cases and

cases for which some variables are observed and other variables are

imputed by the Census Bureau.
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Table 5: Production Function Parameter Estimates And Productivity

Dispersion, Selected Industries, 2007 Census of Manufactures, CART-

completed Data

Production Function Coefficients TFP ratios

75-25, 90-10,

Sample Capital Labor Energy Materials mean mean

industry Size βk βl βe βm (s.d.) (s.d.)

coffee & tea 186 0.083 0.292 0.088 0.559 1.78 3.06

(0.043) (0.105) (0.050) (0.078) (0.13) (0.90)

fertilizer 472 0.067 0.190 0.125 0.559 1.54 2.41

(0.025) (0.038) (0.021) (0.029) (0.04) (0.22)

flour 210 0.055 0.122 0.116 0.687 1.27 1.70

(0.030) (0.044) (0.057) (0.056) (0.03) (0.07)

fluid milk 362 0.069 0.182 0.109 0.613 1.36 1.99

(0.038) (0.045) (0.039) (0.073) (0.05) (0.11)

ice 295 0.070 0.340 0.343 0.287 1.59 2.35

(0.031) (0.060) (0.034) (0.039) (0.03) (0.08)

soy beans 89 0.065 0.091 0.033 0.826 1.48 1.95

(0.093) (0.098) (0.052) (0.047) (0.04) (0.12)

sugar 73 0.139 0.170 0.146 0.447 1.69 3.14

(0.081) (0.157) (0.095) (0.143) (0.14) (0.52)

The table shows the means across 20 CART-completed datasets of

production function parameters and total factor productivity (TFP) dispersion.

Standard errors are in parentheses. The standard errors of the estimates from

each of the 20 implicates are combined using Rubin’s (1987) combining formulas.

For the TFP dispersion measures, the standard deviations of the TFP dispersion

estimates across the 20 implicates are shown in parentheses.
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Capital Labor Energy Materials

industry βk βl βe βm

coffee & tea 0.696 0.204 0.500 0.976

fertilizer 0.736 0.748 0.500 0.716

flour 0.972 0.540 0.944 0.892

fluid milk 0.708 0.340 0.928 0.724

ice 0.316 0.460 0.852 0.380

pesticides 0.980 0.576 0.980 0.628

soy beans 0.840 0.492 0.920 0.980

sugar 0.928 0.988 0.820 0.828

Table 6: Posterior Predictive P-Values for Production Function

Parameter Estimates, Selected Industries, 2007 Census of Manu-

factures, CART-completed Data vs. CART-predicted Data. The

p-values indicate whether or not the parameter estimates from the CART-

completed datasets consistently deviate from the estimates from the CART-

predicted datasets, based on 500 pairs of completed datasets and predicted

datasets for each industry.
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